Unit 4

Geometry

Grade 8 Math

Unit Description:

This unit will introduce new geometry concepts of transformations, congruence, similarity, parallel lines, angle relationships created from parallel lines cut by a transversal, and the Pythagorean Theorem. Students will add to their understanding of 3-D objects to include volume of cylinders, cones, and spheres.

Standards for Mathematical Practice

MP. 1 Make sense of problems and persevere in solving them.
MP. 2 Reason abstractly and quantitatively.
MP. 3 Construct viable arguments and critique the reasoning of others.
MP. 4 Model with mathematics.
MP. 5 Use appropriate tools strategically.
MP. 6 Attend to precision.
MP. 7 Look for and make use of structure.
MP. 8 Look for and express regularity in repeated reasoning.
Louisiana Student Standards for Mathematics (LSSM)

G - Geometry

A. Understand congruence and similarity using physical models, transparencies, or geometry software.	
8.G.A.1	Verify experimentally the properties of rotations, reflections, and translations: (Rotations are only about the origin and reflections are only over the y-axis and x-axis in Grade 8) a. Lines are taken to lines, and line segments to line segments of the same length. b. Angles are taken to angles of the same measure. c. Parallel lines are taken to parallel lines.
8.G.A.2	Explain that a two-dimensional figure is congruent to another if the second can be obtained from the first by a sequence of rotations, reflections, and translations; given two congruent figures, describe a sequence that exhibits the congruence between them. (Rotations are only about the origin and reflections are only over the y-axis and x-axis in Grade 8)

8.G.A. 3	Describe the effect of dilations, translations, rotations, and reflections on two-dimensional figures using coordinates. (Rotations are only about the origin and reflections are only over the y axis and x-axis in Grade 8)	
8.G.A. 4	Explain that a two-dimensional figure is similar to another if the second can be obtained from the first by a sequence of rotations, reflections, translations, and dilations; given two similar two-dimensional figures, describe a sequence that exhibits the similarity between them. (Dilations only use the origin as the center of dilation, rotations are only about the origin and reflections are only over the y-axis and x-axis in Grade 8)	
8.G.A. 5	Use informal arg sum and exterio created when pa angle-angle crite arrange three copies three angles appea transversals why this	ments to establish facts about the angle angle of triangles, about the angles allel lines are cut by a transversal, and the on for similarity of triangles. For example, of the same triangle so that the sum of the to form a line, and give an argument in terms of is so.
B. Understand and apply the Pythagorean Theorem.		
8.G.B.6	Explain a proof converse using	the Pythagorean Theorem and its area of squares.
8.G.B. 7	Apply the Pythag lengths in right problems in two require students to	rean Theorem to determine unknown side angles in real-world and mathematical and three dimensions. (Some parts of tasks use the converse of the Pythagorean Theorem.)
8.G.B. 8	Apply the Pythag between two poi	rean Theorem to find the distance s in a coordinate system.
C. Solve real-world and mathematical problems involving volume of cylinders, cones, and spheres.		
8.G.C. 9	Know the formu spheres and use problems	for the volumes of cones, cylinders, and hem to solve real-world and mathematical
ring Understandings: gruent figures have the same size and n parallel lines are cut by a transversal, sponding angles, alternate interior s, alternate exterior angles, and vertical s are congruent. Pythagorean Theorem can be used both raically and geometrically to solve ems involving right triangles		Essential Questions: *What are transformations and what effect do they have on a two-dimensional figure? *How can you use coordinates to describe the result of a translation, reflection, or rotation? *What properties of a two-dimensional figure are preserved under a translation, reflection, or rotation? *Why does the Pythagorean Theorem apply only to right triangles?

> *There is a relationship between the Pythagorean Theorem and the distance formula and both can be used to find missing side lengths in a coordinate plane and realworld situation.
> *Two shapes are similar if the lengths of all the corresponding sides are proportional and all the corresponding angles are congruent. *Two similar figures are related by a scale factor, which is the ratio of the lengths of corresponding sides.
*Where is the origin on a coordinate grid? *What does the scale factor of a dilation convey? *Can two figures be both congruent and similar?

