Unit 1

Newton's $2^{\text {nd }}$ Law and Momentum of Colliding Forces

High School

Physics

Unit Length and Description:

9 Instructional Weeks

Students will analyze data to support the claim that Newton's $2^{\text {nd }}$ Law of Motion describes the mathematical relationship among the net on a macroscopic object, its mass, and acceleration. Students will also use mathematical representations to support the claim that the total momentum of a system of objects is conserved when there is not net force on the system. Students will then apply science and engineering ideas to design, evaluate, and a device that minimizes the force on a macroscopic object during a collision.

Science Standards:

HS-PS2-1 Analyze data to support the claim that Newton's second law of motion describes the mathematical relationship among the net force on a macroscopic object, its mass, and its acceleration.
HS-PS2-2 Use mathematical representations to support the claim that the total momentum of a system of objects is conserved when there is no net force on the system.
HS-PS2-3 Apply scientific and engineering ideas to design, evaluate, and refine a device that minimizes the force on a macroscopic object during a collision.

Enduring UnderstandingsUnit Anchor Phenomenon:

Faster NHL Skater Challenge: Each year skaters challenge to see who can skate the fastest time around the ring. In 2018, that time was 13.454 sec . The record was set in 2016 with a time of 13.172 sec .

Essential QuestionsReflective Summaries:

- How is data used to support claims that Newton's second law of motion describes the mathematical relationship among the net force on a macroscopic object, its mass, and its acceleration?
- Use mathematical representations to support claims the total momentum of a system of objects is conserved when there is no net force on the system.
- How can you apply scientific and engineering ideas to design, evaluate, and refine a device that minimizes the force on a macroscopic object during a collision?

